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We derive the Ornstein-Zernike equation for molecular crystals of axially symmetric particles and apply the
Percus-Yevick approximation. The one-particle orientational distribution functionrs1dsVd has a nontrivial
dependence on the orientationV, in contrast to a liquid, and is needed as an input. Despite some differences,
the Ornstein-Zernike equation for molecular crystals has a similar structure as for liquids. We solve both
equations numerically for hard ellipsoids of revolution on a simple cubic lattice. Compared to molecular
liquids, the orientational correlators in direct and reciprocal space exhibit less structure. However, depending
on the lengthsa andb of the rotation axis and the perpendicular axes of the ellipsoids, respectively, different
behavior is found. For oblate and prolate ellipsoids withb*0.35 (in units of the lattice constant), damped
oscillations in distinct directions of direct space occur for some of the orientational correlators. They manifest
themselves in some of the correlators in reciprocal space as a maximum at the Brillouin zone edge, accompa-
nied by a maximum at the zone center for other correlators. The oscillations indicate alternating orientational
fluctuations, while the maxima at the zone center originate from ferrorotational fluctuations. Fora&2.5 and
b&0.35, the oscillations are weaker, leading to no marked maxima at the Brillouin zone edge. Fora*3.0 and
b&0.35, no oscillations occur any longer. For many of the orientational correlators in reciprocal space, an
increase ofa at fixed b or vice versa leads to a divergence at the zone centerq=0, consistent with the
formation of ferrorotational long-range fluctuations, and for some oblate and prolate systems withb&1.0 a
simultaneous tendency to divergence of few other correlators at the zone edge is observed. Comparison of the
orientational correlators with those from Monte Carlo simulations shows satisfactory agreement. From these
simulations we also obtain a phase boundary in thea-b plane for order-disorder transitions.
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I. INTRODUCTION

The experimental, numerical, and analytical study of
structural properties of simple liquids is a well established
discipline of condensed matter physics. In the center of such
investigations is the static structure factorSsqd. There are
powerful integral equations allowing an approximate calcu-
lation of Ssqd [1]. The starting point is the Ornstein-Zernike
(OZ) equation, relating the total correlation functionhsqd and
the direct correlation functioncsqd. An additional closure
relation, such as the Percus-Yevick(PY) approximation, then
allows to determinehsqd, from whichSsqd follows from

Ssqd = 1 +rhsqd, s1d

wherer is the number density of the liquid. Application of
the PY approximation to a liquid of hard spheres yields good
agreement with the exact result for intermediate values ofr
[1]. However, the crystallization of hard spheres cannot be
described by PY theory.

The extension of the OZ equation and the PY approxima-
tion (or other closure relations) to molecular liquids is
straightforward[1,2] and has been applied extensively(see,
e.g., Refs.[3,4]). As for simple liquids, PY theory usually
does not yield an order-disorder phase transition. Therefore,
it was quite surprizing that a recent application of the mo-

lecular version of that theory to a liquid of hard ellipsoids of
revolution with aspect ratioX0 has allowed the location of a
phase boundary in ther -X0 plane, at which a transition to a
nematic phase takes place[4].

Much less analytical work exists for molecular crystals
[5,6]. These are crystalline materials with, e.g., a molecule at
each lattice site. One of the main interest concerns phase
transitions of the translational and rotational degrees of free-
dom (see, e.g., the review Ref.[7]). These transitions are
influenced by the translation-rotation coupling[8]. But phase
transitions also exist if the crystal is assumed to be rigid.
This has been shown a long time ago by use of the mean-
field approximation(see, e.g., Refs.[9–11]). Most of this
work is devoted to real molecules like CH4, CD4, etc. If the
size of the molecules is much larger than the lattice constant,
there will be strong steric hindrance. In an idealized way, one
may replace the soft pair potentials by hard body interac-
tions. This will be done in the present paper. We will con-
sider hard ellipsoids of revolution with their centers at the
lattice sites of a simple cubic lattice with lattice constant
equal to one. The lengths of the rotation axis and the perpen-
dicular axes of the ellipsoids area andb, respectively. This is
an athermal system for which the free energy is given by
F=−TS, i.e., a phase transition can only be induced by the
entropyS. Similar to hard spheres(see, e.g., Ref.[12]) we
expect a phase transition to an orientationally ordered phase
due to entropic effects. That such an ordered phase may oc-
cur can be intuitively understood as follows. If for givenb
the lengtha is large enough, i.e., the volume fraction is large
enough, an orientationallydisorderedphase is characterized
by many ellipsoids in contact with each other. Accordingly,
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the free volume of the ellipsoids, i.e., the average solid angle
an ellipsoid can rotate freely, is small. However, if the ellip-
soids areorderedthey may be less blocked in certain orien-
tational directions, thereby gaining free volume. Since the
entropy is proportional to the logarithm of the free volume, it
will be larger for the ordered phase, leading to a lower free
energyF. From this argument we expect a phase transition to
an orientationally ordered phase at a critical lengthacsbd.

Besides phase transitions, the study of the orientational
structure of molecules on a rigid lattice is of interest, too.
Changing temperature will influence the steric hindrance be-
tween the molecules. The same happens for hard ellipsoids
when changinga andb. Analogous to simple and molecular
liquids, one can quantify such static orientational properties
by the one-particle orientational distribution function
rs1dsVd [6,8,13–15] and by the orientational correlation func-
tion Gnn8sV ,V8d of molecules at sitesn and n8, where the
orientationV can be characterized, e.g., by the Euler angles
sf ,u ,xd or, for axially symmetric particles, bysf ,ud. Then
the following questions arise: How to computers1dsVd and,
above all, the correlation functionGnn8sV ,V8d by an analyti-
cal method? Does the result forGnn8sV ,V8d allows to locate
a phase boundary where a transition to an orientationally
ordered phase occurs? To provide answers to these questions
is the main motivation of our contribution

There already exist theoretical approaches to these ques-
tions. For example, discretizing the angular degrees of free-
dom, the orientational correlators and finally the neutron
scattering cross section were calculated by use of a cluster
expansion[16] and by a mean-field type of approximation
[17]. The critical diffuse scattering was described by an OZ
approximation (mean-field approximation) of the corre-
sponding susceptibility[18,19]. In the present paper we will
provide answers to the questions above by following quite a
different strategy. We will extend the powerful methods for
calculating the static correlation functions for simple and
molecular liquids to molecular crystals. To be more specific,
we will derive the OZ equation for molecular crystals and
will use the PY approximation as a closure condition.

Our paper is organized as follows. In Sec. II we will in-
troduce the model and the basic physical quantities such as
the one-particle distribution functionrs1dsVd and the orienta-
tional correlation functionGnn8sV ,V8d. The analytical ap-
proach of calculatingGnn8sV ,V8d or its transformSll8sqd
from the OZ equation in combination with the PY approxi-
mation is described in Sec. III. Results from PY theory for
hard ellipsoids of revolution on a simple cubic lattice will be
shown in Sec. IV and compared with those from Monte
Carlo (MC) simulations. This section also presents a short
discussion of the phase transition for the ellipsoids from an
orientationally disordered to an ordered phase. The final Sec.
V contains a discussion of the results and some conclusions.
We add three appendixes, including extensive technical ma-
nipulations needed in Secs. III and IV.

II. DISTRIBUTION AND CORRELATION FUNCTIONS

We consider a three-dimensional periodic lattice withN
lattice sites and periodic boundary conditions. If thenth lat-

tice site has the positionxn, the difference between two sites
is the vectorxnn8=xn8−xn. We assume the lattice to be rigid
with lattice constant equal to one. At each lattice site we fix
a rigid molecule, not necessarily with its center of mass.
Restricting to linear molecules, the orientation of the mol-
ecule at siten is given byVn=sfn,und. The third Euler angle
xn is irrelevant for our purposes. Extension of our theoretical
approach below to arbitrary molecules is straightforward.
The interaction energyVshVnjd is assumed to be pairwise
and the classical Hamiltonian is given by

HshVnj,hlnjd = o
n=1

N
1

2
ln
T I −1sVndln + VshVnjd, s2d

whereln and I sVnd, respectively, are the angular momentum
and the tensor of inertia of the molecule at siten in the space
fixed frame. Since we will investigate static quantities only,
the kinetic part ofHshVnj ,hlnjd does not matter.

In order to describe the orientational degrees of freedom,
we introduce the microscopic one-particle densityrnsVd at
lattice siten and its associated fluctuationdrnsVd defined by

rnsVd = dsVuVnd, s3ad

drnsVd = rnsVd − krnsVdl, s3bd

where dsVuV8d=ssin ud−1 dsu−u8ddsf−f8d. ks·dl denotes
canonical averaging with respect toHshVnj ,hlnjd. Note that
the Vn dependence ofrn and drn is suppressed. The one-
particle orientational distribution function is given by

rs1dsVd = krnsVdl, s4d

which isn independent due to the lattice translational invari-
ance ofHshVnj ,hlnjd, and the two-particle distribution is de-
fined as

rnn8
s2d sV,V8d = krnsVdrn8sV8dl sn Þ n8d. s5d

Making use of Eqs.(3), it follows that

E
S2

rs1dsVddV = 1, s6d

E
S2

rnn8
s2d sV,V8ddV = rs1dsV8d sn Þ n8d, s7ad

E
S2

rnn8
s2d sV,V8ddV8 = rs1dsVd sn Þ n8d. s7bd

where the integrations are done overS2, the surface of the
unit sphere.rs1dsVd is similarly obtained fromr

nn8
s2d sV ,V8d as

the crystal field is deduced from the pair potential[9–11].
However, rs1dsVd is not only determined from the crystal
field but also from thesV ,V8d-dependent part of the poten-
tial.

It is important to realize that in contrast to isotropic mo-
lecular liquids the one-particle distribution functionrs1dsVd
depends onV. Here a comment is in order. In case ofhard
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body potentialsthere may exist regions(denoted byK̄) on S2

in which the hard particles overlap such thatrs1dsVd and
r

nn8
s2d sV ,V8d vanish. Accordingly, these distribution functions

are nonzero on the complementK of K̄, only. An illustration
is given in Fig. 1. The restriction ofV to allowed regions has
led the authors of Refs.[16] and [17] even to approximate
the components ofK by a finite number of discrete orienta-

tions. The vanishing ofrs1dsVd and r
nn8
s2d sV ,V8d on K̄ intro-

duces some technical problems(see below). But fortunately
one can prove that the equations derived forsoft potentials
can be used to calculate the orientational correlators for hard
body interactions[20], what will be done here. This is plau-
sible, since approximating a hard potential by a sequence of
soft potentials becoming harder and harder, one expects that
the corresponding orientational correlators converge to those
for the hard potential.

Next, we introduce the orientational density-density cor-
relation functionGnn8sV ,V8d. It describes the correlation of
the fluctuations ofrnsVd at lattice sitesn andn8,

Gnn8sV,V8d = kdrnsVddrn8sV8dl. s8d

By use of Eqs.(3)–(5) we get

Gnn8sV,V8d = dnn8r
s1dsVddsVuV8d − rs1dsVdrs1dsV8d

+ s1 − dnn8drnn8
s2d sV,V8d. s9d

Gnn8sV ,V8d=G
nn8
ssd sV ,V8d+G

nn8
sdd sV ,V8d consists of a self-

part and a distinct part, which are explicitly

Gnn8
ssd sV,V8d = dnn8fr

s1dsVddsVuV8d − rs1dsVdrs1dsV8dg,

s10ad

Gnn8
sdd sV,V8d = s1 − dnn8dfrnn8

s2d sV,V8d − rs1dsVdrs1dsV8dg.

s10bd

Due to the properties(6) and (7) of the particle distribution
functions,Gnn8sV ,V8d andG

nn8
ssd sV ,V8d fulfill for all nn8,

E
S2

Gnn8sV,V8ddV =E
S2

Gnn8sV,V8ddV8 = 0, s11ad

E
S2

Gnn8
ssd sV,V8ddV =E

S2
Gnn8

ssd sV,V8ddV8 = 0.

s11bd

For the lattice system, the pair and total correlation func-
tionsgnn8sV ,V8d andhnn8sV ,V8d are introduced in the same
manner as for a liquid[1,2],

gnn8sV,V8d =
rnn8

s2d sV,V8d

rs1dsVdrs1dsV8d
sn Þ n8d, s12d

hnn8sV,V8d = gnn8sV,V8d − 1 sn Þ n8d. s13d

In contrast to Eq.(11), it is in general

E
S2

hnn8sV,V8ddV Þ 0,E
S2

hnn8sV,V8ddV8 Þ 0 sn Þ n8d.

s14d

The same is true forgnn8sV ,V8d. But, due to Eqs.(6), (7),
(12), and(13),

E
S2

rs1dsVdhnn8sV,V8ddV = 0 sn Þ n8d, s15ad

E
S2

hnn8sV,V8drs1dsV8ddV8 = 0 sn Þ n8d. s15bd

In the asymptotic limit of large particle separations,
gnn8sV ,V8d andhnn8sV ,V8d in the disordered phase behave
like

lim
uxnn8u→`

gnn8sV,V8d = 1, s16d

lim
uxnn8u→`

hnn8sV,V8d = 0, s17d

independent of the direction ofxnn8. This follows due to
lim uxnn8u→`r

nn8
s2d sV ,V8d→rs1dsVdrs1dsV8d, which is in full

agreement with the behavior of a liquid system.
The reader should note that it is the definition(12) and

(13) of gnn8sV ,V8d and hnn8sV ,V8d, respectively, which
causes problems in case of hard potentials, because the de-
nominator in Eq.(12) vanishes for orientations withV or V8

in the sterically forbidden regionK̄ [see discussion in para-
graph above Eq.(8)].

Making use of Eqs.(10), (12), and(13) and introducing

FIG. 1. MC results forrs1dsVd for hard ellipsoids of revolution
with a=3.6, b=0.24 (left), a=1.2, b=0.88 (middle), and a=0.56,
b=1.1 (right) on a simple cubic lattice. Orientations onS2 obtained
from MC runs are projected along the fourfold lattice direction.

Parts ofK̄ occur along the twofold, threefold and fourfold lattice
directions, depending approximately on whethersa+bd /2 exceeds
the site-site spacing along one of these directions. Some circles

approximating the edges of the parts ofK̄ are shown as an aid for
the eye.
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DsV,V8d = 4pfrs1dsVddsVuV8d − rs1dsVdrs1dsV8dg
s18d

we can rewriteG
nn8
sad sV ,V8d, a=s,d, as follows:

Gnn8
ssd sV,V8d =

1

4p
dnn8DsV,V8d, s19ad

Gnn8
sdd sV,V8d = s1 − dnn8dr

s1dsVdhnn8sV,V8drs1dsV8d.

s19bd

As for molecular liquids [2] (see also, e.g., Refs.
[3,4,21,22]) we will expand all orientation-dependent func-
tions with respect to spherical harmonicsYlsVd, l=slmd.
1Consequently, we have for any functionsfsVd and
Fnn8sV ,V8d their l transforms and the corresponding inverse
transformations,

fl = i lE
S2

fsVdYlsVddV, s20ad

fsVd = o
l

s− idl fl Yl
* sVd, s20bd

Fnn8,ll8 = i l8−l E
S2
E

S2
Fnn8sV,V8dYl

* sVdYl8sV8ddV dV8,

s21ad

Fnn8sV,V8d = o
ll8

s− idl8−lFnn8,ll8 YlsVdYl8
* sV8d.

s21bd

The purely imaginary prefactors in Eqs.(20) and (21) are
taken in agreement with Ref.[21].

Finally, we can use the lattice Fourier transform due to the
lattice translational invariance. It is restricted to the first Bril-
louin zone(BZ) of volumeVBZ. For example, the transform
of the site-site matrix elements(21a) and its inverse are
given by

Fll8sqd = o
xnn8

eiq·xnn8Fnn8,ll8, s22ad

Fnn8,ll8 =
1

VBZ
E

1·BZ
Fll8sqde−iq·xnn8d3q. s22bd

Symmetry properties of the one-particle distributionrs1dsVd
and ofGnn8sV ,V8d and itsl transform are presented in Ap-

pendix A. These properties will be useful in the following.

III. ORNSTEIN-ZERNIKE EQUATION AND PERCUS-
YEVICK APPROXIMATION

Similarly to simple and molecular liquids, we will intro-
duce the direct correlation functioncnn8sV ,V8d, which is re-
lated tohnn8sV ,V8d by the OZ equation. Sincecnn8sV ,V8d is
determined by the inverse functions ofG

nn8
ssd sV ,V8d and

Gnn8sV ,V8d, one has to be careful because of relations(11),
which imply that a constant functionfsVd=const is an eigen-
function of G

nn8
ssd sV ,V8d and Gnn8sV ,V8d with eigenvalue

zero. Therefore, these inverses do not exist on the one-
dimensional subspace of constant functions. This feature is
typical for molecular crystals.

However, the problem of inverting thesV ,V8d-dependent
correlators can easily be solved by taking theirl transform-
ing equation(21a). In addition, it is convenient to use the
Fourier transformed quantities. Hence we will investigate
matricesGsqd andGssdsqd with elements

Gll8sqd =
1

N
kdrl

* sqddrl8sqdl ;
1

4p
Sll8sqd, s23d

Gll8
ssd sqd =

1

4p
Dll8, s24d

which are zero forl =0 and/or l8=0 because of Eq.(11).
However,hll8sqd, gll8sqd in general[the same is true for the
direct correlation function matrix elementscll8sqd intro-
duced in Eq.(33)] do not vanish forl =0 and/or l8=0. In
order to avoid confusion it is convenient to use

Fll8 ; Fll8
° sl ù 1,l8 ù 1d. s25d

If the first row and column ofF vanish, its physical content
is in F°, only. SinceG and Gssd=1/4p D are of this form,
inversion has to be done with respect toG° andD°.

This behavior has also consequences inV space. In gen-
eral, correlation functionsFsV ,V8d, such ashnn8sV ,V8d,
will have “unphysical” parts, eeFsV ,V8ddV dV8,
eFsV ,V8ddV8, andeFsV ,V8ddV. In that case their “physi-
cal” part is given by

F° sV,V8d

=E
S2
E

S2
RsV,V9dFsV9,V-dRsV-,V8ddV9dV-,

s26d

where the projectorRsV ,V8d=dsV uV8d−1/4p projects out
the unphysical parts. The reader should note that this is dif-
ferent to the decomposition of the pair potential into an iso-
tropic parteevnn8sV ,V8ddV dV8 and crystal field terms re-
lated toevnn8sV ,V8ddV andevnn8sV ,V8ddV8 [9–11]. In that
case these terms have a physical meaning.

It is straightforward to prove that for thel transform of
F° sV ,V8d it is Fll8=0 for l =0 and/orl8=0. This is reason-
able since thel transformings of the correlation functions

1Instead, one could also use a complete set of functions, deter-
mined by the rotational symmetry. IfP is the point symmetry group
of the lattice andPM the symmetry group of the molecules, one can
use basis functions for irreducible representations of the symmetry
group of rs1dsVd, which is a subgroup ofP ^ PM [8,13,14]. For
axially symmetric particles, these are linear combinations of the
spherical harmonicsYlsVd ,l=slmd [8,13].
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with l =0 and/orl8=0 do not describe orientational degrees
of freedom and therefore are unphysical.

Using Eqs.(15) and (18) one gets

frs1dsVdhsV,V8,qdrs1dsV8dgll8

=
1

s4pd2 o
l9l-sl9l-Þ0d

Dll9
° hl9l-

+ sqdDl-l8
° , s27d

which implies

S° sqd = D° +
1

4p
D° h° sqdD° ; 4p G° sqd. s28d

Here, the Fourier transformh° sqd has to be determined by
using the constraint for allll8,

hnn,ll8
° = 0. s29d

Equation(28) generalizes the well-known relation between
the static correlatorSsqd and the total correlation function
hsqd for liquids [cf. Eq. (1)] to molecular crystals.

Now we are in a position to introduce the direct correla-
tion functionc° sqd and to derive the OZ equation.c° sqd is
defined by

c° sqd = sGssd+d−1 − sG° sqdd−1. s30d

Substituting(G° sqd)−1 from Eq. (30) and G° sqd from Eq.
(28) into

„G° sqd…−1 G° sqd = 1°

and making use of Eq.(19a) yields the OZ equation

h° sqd = c° sqd +
1

4p
c° sqdD° h° sqd. s31d

The back transformation of Eq.(31) leads to the OZ equa-
tion in real and angular spaces,

s1 − dnn8dhnn8
° sV,V8d = cnn8

° sV,V8d +
1

4p
o

n9sÞn8d
E

S2
E

S2

3cnn9
° sV,V9dD° sV9,V-d

3hn9n8
° sV-,V8ddV9 dV-. s32d

Note thatcnn
° sV ,V8dÞ0, in general.

This result is almost the same as for molecular liquids[2].
There are two main differences. First, we have to use all
matrices with the first row and column of the original matri-
ces skipped. Second, there appears the matrixD° and third
the Fourier backtransform ofh° sqd has to fulfill the condi-
tion (29) for all ll8.

Up to now, the equations are not closed. Since neither the
total correlation nor the direct correlation function is given,
the previous concepts are almost useless if one is interested
in an analytical approach to determine the structure factors
(23) and (28). An additional equation, called the closure re-
lation, must be used to find a self-consistent solution forhsqd
andcsqd, as for simple and molecular liquids. It has been our
intention to follow as close as possible the established lines

of liquid theory, and so we chose the most straightforward
analogon of the PY approximation for the lattice, which is
for nÞn8,

cnn8sV,V8d = fnn8sV,V8d„gnn8sV,V8d − cnn8sV,V8d…

= fnn8sV,V8d„1 + hnn8sV,V8d − cnn8sV,V8d….

s33d

Note that Eq.(32) involves cnn8
° sV ,V8d and hnn8

° sV ,V8d,
only, but in Eq. (33) the full functions cnn8sV ,V8d and
hnn8sV ,V8d appear. It can be shown for hard particles and
nÞn8 that cnn8

° sV ,V8d already determinescnn8sV ,V8d
uniquely [20], and the same is true forhnn8

° sV ,V8d and
hnn8sV ,V8d [see Appendix B, Eq.(B7)]. fnn8sV ,V8d is the
Mayer f function, which is

fnn8sV,V8d = exph− bVnn8sVn,Vn8dj − 1 s34d

for nÞn8. For hard particles, the pair potential is
Vnn8sV ,V8d=0 [if the pair snV ,n8V8d has no overlap] and
Vnn8sV ,V8d=` (if the pair has overlap). This implies

fnn8sV,V8d = H 0, no overlap

− 1, overlap.
s35d

The range of thef function for hard ellipsoids is maxsa,bd, if
the ellipsoids are fixed with their centers of mass on the
lattice. In accordance with the theory of liquids of hard par-
ticles, Eq. (33) yields gnn8sV ,V8d=0↔r

nn8
s2d sV ,V8d=0,

while cnn8sV ,V8d remains undetermined, ifsnV ,n8V8d has
overlap andcnn8sV ,V8d=0 while gnn8sV ,V8d remains unde-
termined, ifsnV ,n8V8d has no overlap[1,2].

Thel transform of the Mayer function will be nonzero for
l =0 and/orl8=0. The same holds for thel transforming of
cnn8sV ,V8d. Therefore the direct and, as stressed above, the
total correlation function related by the PY approximation
contain unphysical parts, in contrast to the direct and total
correlation functions related by the OZ equation. Fortunately,
this will not introduce a serious problem as will be discussed
in Sec. IV B and shown in more detail in Appendixes B and
C, and in Ref.[20].

IV. RESULTS FOR HARD ELLIPSOIDS ON A SIMPLE
CUBIC LATTICE

The self-consistent solution of the OZ equation and the
PY approximation has been done numerically. In order to
check the quality of these solutions we have performed MC
simulations, which also allow to determine the phase bound-
ary between orientationally ordered and disordered phases.
We stress that the investigation of the phase transition has
not been our major motivation. Therefore we have not at-
tempted to verify the phase boundary by more sophisticated
MC algorithms. Before we describe the numerical solution of
the OZ/PY equations in Sec. IV B, let us present some details
of the MC simulations in the following section. The results
from both approaches will be discussed in Sec. IV C.

For both, the numerical solution of the OZ equation using
the PY approximation and the MC studies the overlap crite-
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rion of Vieillard-Baron[23] for hard ellipsoids of revolution
is used.

A. MC simulations

The MC simulations are performed for a simple cubic
lattice with 16316316 sites and periodic boundary condi-
tions. For systems having very long-ranged correlations
along a certain lattice direction, test runs with 32332332
particles are done, but the results are only slightly different
and not shown in this work.

The only possible MC move is a rotation for a randomly
chosen particle perpendicularly to its orientation axisun by
an angle 0øuøumaxøp, where cosu is at random, and a
subsequent rotation with respect to its original orientation by
a random angle 0øfø2p. If this move leads not to an
overlap of ellipsoids, it is accepted, otherwise rejected, in
which case the next move is not tried for the same particle,
but for a new randomly chosen one.

As starting configuration for each MC run parallel ellip-
soids are chosen. Each particle is moved on an average of
1000 times withumax=p /2 to get a rapid convergence to the
disordered phase having a cubic symmetry, if possible. Af-
terwards,umax is adjusted to an acceptance rate of 25% and
the system is equilibrated well before the production phase.

To discriminate between the disordered and ordered
phases, we have used several criteria[20]. Let us describe
two of them. First, after equilibration we have calculated the
largest eigenvaluel+ of the Saupe tensor[24] for a given
size of the lattice. Note thatl+ is related tokY2ml, m=
−2, . . . ,2, andthat l+ù0. Due to finite size effectsl+ be-
comes small, but nonzero in the disordered phase. We have
checked that this small value decreases with increasing sys-
tem size, as it should be in the disordered phase. Second, the
symmetry relations, Eq.(A3), which hold in the disordered
phase only, were used. For instance, calculatingkY4±4l and
kY40l from the MC trajectories the ratiokY4±4l / kY40l should
be close to the exact value114

Î70 [cf. Eq. (A3)]. Since this
test involvesl ù2, it is more reliable, because one cannot
exclude that an orientational order exists for whichkY2ml
=0.

The resulting phase diagrams for prolate and oblate ellip-
soids are shown in Fig. 2. The thin solid lines characterize
the closest packing of parallel ellipsoids. They represent up-
per bounds for the phase boundaries for transitions to or-
dered phases withaligned ellipsoids. Whether there exist
more complex ordered phases, commensurate, or incommen-
surate ones with even larger volume fraction than on the thin
solid lines is not known. An interesting feature of these lines
can be observed. For prolate and oblate ellipsoids there are
characteristic pairssa,bd at which cusps occur, indicating a
maximum volume fraction. The light gray areas represent the
transition region from an orientationally disordered to an or-
dered phase. The latter is not necessarily a phase of aligned
ellipsoids. Transitions have been observed from the ordered
to the disordered phases and also vice versa for systems with
ellipsoids of small enough maximum linear dimension, hav-
ing only few interaction partners. The hysteresis is small,
indicating either a continuous or a weakly first-order phase

transition. The dark gray areas refer to the OZ/PY solution
and indicate where the iteration scheme described in Sec.
IV B and Appendix C turns from convergent to divergent.

B. Numerical solution of the OZ equation
using the PY approximation

The numerical solution of the OZ/PY equations is per-
formed by the iterative procedure described in Appendix C
for lattices of size 32332332 and periodic boundary con-
ditions. The head-tail symmetry of the particles restricts the
number of nonzero matrix elements forGnn8, cnn8 (andhnn8,
fnn8 for nÞn8) to l and l8 even. The only exception is the
self-part ofGnn8 (see Appendix A). The numerical solution
of the OZ/PY equations requires a truncation of these matri-

FIG. 2. Phase diagrams for(a) prolate and(b) oblate hard ellip-
soids of revolution on a simple cubic lattice. Solid lines refer to the
closest packing for parallel ellipsoids. Within the light gray areas an
order-disorder phase transition occurs, while the dark gray areas
indicate where the numerical solution of the OZ/PY equations starts
to diverge. For a more detailed discussion see text of Secs. IV A
and IV B. In the figures above, areas are used instead of error bars.
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ces at lmax, with exception offnn8 which is cut at 2lmax.
Usually we have chosenlmax=4. For some systems, charac-
terized bysa,bd, we have also takenlmax=2 andlmax=6. All
the correlators we have investigated remain qualitatively un-
changed, while the correlation lengths of these correlators
become larger for increasinglmax. For those systems showing
no convergence of the iteration scheme because of diverging
correlation lengths forlmax=4 and 32332332 lattice sites,
system sizes up to 12831283128 have been used. But then
also for none of these bigger system sizes convergence could
be achieved.

For the iteration procedure it is convenient to use the
l-transform of the PY equation(33),

cnn8,ll8 = o
l1l2l3l4

Asll8ul1l2,l3l4dfnn8,l1l2

3sgnn8,l3l4
− cnn8,l3l4

d, s36d

where

Asll8ul1l2,l3l4d = i l8−l+l1−l2+l3−l4F s2l1 + 1ds2l3 + 1d
4ps2l + 1d G1/2

3F s2l2 + 1ds2l4 + 1d
4ps2l8 + 1d G1/2

Csl1l3l,000d

3Csl2l4l8,000dCsl1l3l,m1m3md

3Csl2l4l8,m2m4m8d s37d

with Csl1l2l3,m1m2m3d the Clebsch-Gordon coefficients[2].
The self-consistent solution of the OZ/PY equations needs

Dll8
° and fnn8,ll8 as input, which will be given in Appendix

B. Convergence of the iteration is assumed after the relative
change of the correlators has submerged a certain threshold.
Then the fix point solutionh° sqd is taken to calculateSsqd
from Eq. (28) andGnn8 by back transformation.

C. Numerical results for the correlation functions

Results obtained from the numerical solution of the
OZ/PY equations and the MC simulations are presented in
Figs. 3–8 for four different pairs ofsa,bd, including prolate
and oblate ellipsoids. We have restricted the illustrations of
correlators in direct and reciprocal space to the matrix ele-
mentssl = l8=2,m=m8=0,1,2d, sl =2,l8=4,m=m8=0,1,2d,
and sl = l8=4,m=m8=0,1,2,3,4d.

Log-lin representations of the direct space orientational
correlatorsGn0,ll8 are shown along lattice directions of high
symmetry, i.e.,xn0=s0,0,nd, s0,n,nd, and sn,n,nd for n
=0,1,¯ ,8 [part (a) of Figs. 3–8]. Along these directions,
all Gn0,ll8 are real for the chosenll8, by the symmetries
(A5). Note that a stepDn=1 corresponds to different lengths
in direct space, namely 1,Î2, andÎ3 for the different lattice
directions. For eachm=m8 and each lattice direction, a sepa-
rate picture is provided and a logarithmic plotting has been
chosen for positive and negative values ofGn0,ll8 separately,
i.e., the negative values are presented as −lnuGn0,ll8u. This
plotting shows that the direct space correlations decay expo-
nentially in most cases. The respective values ofxn0 andll8
are included, too. Note that the scatter of the MC data for

somell8 and larger values ofn is due to the error margins.
Similarly to direct space, only correlatorsSll8sqd along

highly symmetric reciprocal lattice directions are displayed,
i.e., q=js0,0,pd , js0,p ,pd, and jsp ,p ,pd for 0øjø1,
which are the correlators from the Brillouin zone center to its
edge in the respective direction[part (b) of Figs. 3–8]. The
curves are distinguished by the symbolsD (s0,0,pd
direction), S (s0,p ,pd direction), and L (sp ,p ,pd
direction), as usual in solid state physics. AllSll8sqd which
are shown are real by the symmetries(A6). Additionally, by
Eq. (23), the diagonal elementsS2m2msqd and S4m4msqd are
positive. The numerically determined correlatorsSll8sqd
have been interpolated by cubic splines with the correct

FIG. 3. (a) Log-lin representation of the direct space orienta-
tional correlatorsGn0,2m2m along highly symmetric lattice directions
(solid circles5 OZ/PY results, squares5 MC results; dashed lines
are a guide to the eye), (b) orientational structure factorsS2m2msqd
along the respective reciprocal lattice directions(solid lines
5OZ/PY results, dotted lines5MC results). These results are for
oblate hard ellipsoids with axesa=0.4, b=1.2 on a simple cubic
lattice with lattice constant equal to one andm=0,1,2. Forfurther
explanation see text of Sec. IV C.

FIG. 4. Same as in Fig. 3, but forl =2, l8=4.
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boundary condition of vanishing gradients forj=0 and
j=1. Note the different scales of the illustrations for different
ll8.

Let us first start by discussing the results foroblatehard
ellipsoids with axesa=0.4 andb=1.2 shown in Figs. 3–5.
This system has a packing fraction off<0.3
and is quite close to the MC phase boundary shown in Fig.
2(b), but not close enough to find a tendency to a divergence
of some of theSll8sqd. Notice the almost perfect agreement
of the OZ/PY and MC orientational correlators in direct

space, in case where the MC results are large enough. In fact,
such an agreement appears for all investigated oblate ellip-
soid systems, for which MC results are available, except for
the system witha=0.72,b=1.1. Relatively long-ranged os-
cillations appear for all correlators along the fourfold lattice
direction f0,0,1g having even m=m8. The other correlators
along the same direction decay faster and monotonously
without oscillation, and also the correlators along the other
directions decay without oscillations. Note that fora=0.4
and b=1.2 the ellipsoids can only interact via their nearest
neighbors, which are localized along the fourfold lattice di-
rections. Therefore, it is tempting to assume that the oscilla-
tions are primarily related to a direct particle interaction via
nearest neighbors along a certain lattice direction. For denser
oblate and some prolate systems, the oscillations extend up
to many lattice constants. For the structure factorsSll8sqd,
the agreement of OZ/PY and MC results is satisfactory. The
most significant deviations appear forl = l8=2 nearq=0. The
oscillations exhibited by some of theGn0,ll8 manifest them-

FIG. 5. Same as in Fig. 3, but forl = l8=4 and
m=0,1,2,3,4.

FIG. 6. Same as in Fig. 3, but for prolate hard ellipsoids with
axesa=1.6, b=0.6.

FIG. 7. Same as in Fig. 3, but for prolate hard ellipsoids with
axesa=3.6, b=0.24.

FIG. 8. Same as in Fig. 3, but for prolate hard ellipsoids with
axesa=4.8, b=0.24.
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selves in some maxima at the Brillouin zone edge, mainly for
correlatorsS2m2msqd andS4m4msqd with m even, but also for
the correlatorsS2040sqd. Increasinga and/orb for oblate sys-
tems, the OZ/PY results for some of these zone-edge maxima
show a tendency to diverge, accompanied by a simultaneous
divergence mainly of the remainingl = l8=2 correlators at the
zone center.

Now, we turn toprolate ellipsoids. Compared to oblate
ellipsoids, the correlators for the prolate ones depend more
sensitively ona and b. We show results forl = l8=2 only.
Correlators withsl , l8dÞ s2,2d, which were also calculated,
do not yield new insight. First, we have chosen prolate ellip-
soids with a=1.6, b=0.6, having a packing fraction of
f<0.3, for which some results are shown in Fig. 6. For this
system, oscillations appear additionally along the two other
lattice directions(i.e., f0,1,1g and f1,1,1g), which confirm
the assumption that they may be caused by direct interaction
via nearest neighbors for appropriate values ofb and not too
large a. Again, the MC results in direct space match the
analytical results very well, though latter overestimate some
of the correlation lengths. The much too large OZ/PY results
for the correlatorsS2222sqd at the zone boundary along theD
direction are perhaps also due to this overestimation.

Now we pass to more and more elongated prolate ellip-
soids and investigate what happens. In the limit of this pro-
cess one obtains the hard-needle system, which is discussed,
e.g., in Ref.[25]. Ellipsoids with axesa=3.6 andb=0.24
have a huge aspect ratio ofX0=a/b=15. Of course, the pack-
ing fraction of these ellipsoids on the simple cubic lattice is
quite low, about 10%, but the frustration effect of the rigid
lattice may provide completely new effects in comparison to
a liquid. As shown in Fig. 7, the behavior of most of the
correlatorsGn0,2m2m is rather monotonous in comparison to
a=1.6 andb=0.6. Oscillations have disappeared completely,
except some oscillatory transient behavior for the[0,0,1] di-
rection andl=l8=s22d. However,Gn0,ll8 shows less regular
variation along the[0,0,1] direction for l=l8=s20d. The
OZ/PY results clearly underestimate theS2m2msqd correlators
for smallq. This is also the case for theS2m2msqd correlators
of other investigated systems in the neighborhood ofa=3.6,
b=0.24.

The last system we present consists of ellipsoids with
a=4.8 andb=0.24, for which it is X0=20 and f<16%.
Results are shown in Fig. 8. The correlators in direct space
essentially show monotonous decay, and the correlation
lengths have clearly increased in comparison toa=3.6 and
b=0.24. Unfortunately, this system lies beyond the MC
phase boundary[see Fig. 2(a)], so that no MC results are
available. Despite of the monotonous behavior of most cor-
relators, theGn0,2020 correlators along the[0,0,1] direction,
for example, show irregular behavior, as it was the case for
a=3.6 andb=0.24(see Fig. 7). In Fig. 8, the beginning of a
divergence of theS2121sq=0d correlator is seen. The corre-
sponding value fora=5.6,b=0.24 is about 20.

V. DISCUSSION AND CONCLUSIONS

Our main goal has been the study of static orientational
correlation functions for a molecular crystal in its disordered

phase. For this, we have derived the OZ equation, well
known in liquid theory, for a rigid periodic lattice with inter-
nal orientational degrees of freedom. As a closure relation we
have adopted the PY approximation. As pointed out, there
are differences for the present approach to that for liquids.
One of them is the fact that the OZ equation only involves
the physical parts of the direct and total correlation func-
tions, i.e.,cnn8

+ sV ,V8d andhnn8
+ sV ,V8d, whereas the PY ap-

proximation relatescnn8sV ,V8d and hnn8sV ,V8d. Another
important, well-known difference is the one-particle orienta-
tional distribution functionrs1dsVd. In the isotropic phase of
a molecular liquid it isrs1dsVd=1/4p, but due to the aniso-
tropy of a crystalrs1dsVd exhibits a nontrivialV dependence.
In order to solve the OZ/PY equations, one has to calculate
rs1dsVd separately. In our case, we have performed MC simu-
lations. Analytical approaches are also possible, e.g., for
fixed a one could perform a kind of virial expansion for
small b.

Despite these differences, the form of the OZ equation for
a molecular crystal is quite similar to that for molecular liq-
uids [2]. In order to explore the applicability of the lattice
OZ equation in combination with the PY approximation, we
have solved these equations for hard ellipsoids of revolution
on a simple cubic lattice. Due to the orientational degrees of
freedom, the orientational correlatorsGnn8,ll8 in direct space
or Sll8sqd in reciprocal space, withl=slmd, are tensorial
quantities. Accordingly, the self-consistent numerical solu-
tion of the OZ/PY equations requires a truncation atlmax. We
mainly have chosenlmax=4. As a result, we have found ori-
entational correlators which have less structure in direct and
reciprocal spaces than for liquid systems. Nevertheless, there
are some interesting features depending on the lengtha andb
of the ellipsoid axes. For oblate ellipsoids and prolate ones of
large enoughb, some of the direct space orientational corr-
elators exhibit oscillations in certain lattice directions. Since
the oscillations have period two they lead to maxima of
Sll8sqd at the Brillouin zone edge for somell8. Although no
long-range orientational order exists, the oscillatory behavior
originates from an alternating reordering of the ellipsoids on
a finite length scale, which can extend up to many lattice
constants.

Decreasing for prolate ellipsoidsb and increasinga leads
to a disappearance of almost all of these significant oscilla-
tions. In this case, the correlatorsS2m2msqd take their absolute
maxima at the Brillouin zone center(cf. Figs. 7 and 8), in-
dicating ferrorotational fluctuations, while this behavior is
not found to the same extent for the other correlators(see
also Ref.[20]). The behavior of the correlatorsS2m2msqd re-
sembles that of a liquid of ellipsoids with aspect ratio larger
than about two which forms a nematic phase[26]. Surpris-
ingly, increasinga for fixed b more and more the OZ/PY
results forS2m2msqd lead to a divergence atq=0, which in-
dicates the tendency to establish a long-range ferrorotational
order. This finding demonstrates that PY theory applied to
molecular crystalscan yield the onset of a phase transition to
an ordered phase, as it was already found before for a liquid
of hard ellipsoids[4].

Some correlators for appropriately long prolate ellipsoids
exhibit rather irregular behavior in direct space, which is
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nevertheless consistent with MC results(where available)
and therefore has to be taken seriously(cf. Fig. 7). We sup-
pose the frustration effect of the lattice to be the reason for
this irregular behavior.

Comparison of the PY results with those from MC simu-
lations shows a satisfactory agreement. But the quality of
this agreement is less good than it is, e.g., for a liquid of hard
spheres. The reason for this may lie in the PY approximation.
For a liquid its physical content has been elucidated by Per-
cus [27] (see also Ref.[1]) by use of a grand canonical
ensemble. Since in a molecular crystal the particles are fixed,
it is not obvious how this reasoning can be used. Of course,
it might be interesting to investigate whether other closure
relations[1] or the turn to much higherlmax can lead to an
improvement.

To conclude, we have presented for molecular crystals a
theoretical framework for the calculation of correlation func-
tions. This has been achieved by an extension of the OZ
equation from liquids to crystals. In combination with the PY
approximation we have demonstrated that this framework
leads to satisfactory results compared with MC data.
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APPENDIX A: SYMMETRY RELATIONS FOR THE ONE-
PARTICLE DISTRIBUTION AND THE CORRELATION

FUNCTIONS

In this appendix we will present some useful properties of
the one-particle and two-particle quantities.

Let us first discuss the one-particle orientational distribu-
tion function rs1dsVd in the disordered phase.rs1dsVd must
carry the full point symmetryP of the underlying periodic
lattice, and also the symmetryPM of the particles[8,13].
Neglecting the latter for a moment,rs1dsVd for axially sym-
metric particles can be expanded into a series of allP invari-

ant combinationsŶlnl
sVd of spherical harmonics. This expan-

sion reads[cf. (20b)]

rs1dsVd = o
lnl

s− idl rlnl

s1d Ŷlnl

* sVd. sA1d

Here, the numbersnl are the multiplicities of the unity irre-
ducible representation contained in the point group represen-
tation ofP established by all spherical harmonics of orderl.
Then, by the invariance requirement under symmetry opera-
tions of the particles, Eq.(A1) can eventually be further sim-
plified [8,13]. If the lattice is cubic,P=Oh, and for any kind
of axially symmetric particles we have

rs1dsVd =
1

Î4p
Ŷ01sVd + r41

s1d Ŷ41sVd − r61
s1d Ŷ61sVd

+ r81
s1d Ŷ81sVd + Osl = 10d. sA2d

The Oh cubic invariantsŶ01sVd=Y00sVd=s4pd−1/2, Ŷ41sVd,

Ŷ61sVd, andŶ81sVd arereal functions and given in Ref.[28]
up to factorss4pd−1/2r−l. 2In Sec. IV B and Appendix B, the
canonical averageskYll=eS2 rs1dsVdYlsVddV are needed.

The valueskŶ41l, kŶ61l, and kŶ81l have been calculated by
MC simulations(see Sec. IV A) for several values ofa and
b. The nonvanishingkYll in the disordered phase up tol
=9 are given by

kY00l =
1

Î4p
, kY40l =

Î21

6
kŶ41l,

kY4±4l =
Î30

12
kŶ41l, kY60l =

Î2

4
kŶ61l,

kY6±4l = −
Î7

4
kŶ61l, kY80l =

Î33

8
kŶ81l,

kY8±4l =
Î42

24
kŶ81l, kY8±8l =

Î390

48
kŶ81l. sA3d

These relations also allow to check whether the system is in
the disordered phase. For instance, calculatingkY40l and
kY4±4l from the MC trajectories, their ratiokY4±4l / kY40l must
be < 1

14
Î70.

Next, we investigate the symmetries ofGnn8sV ,V8d,
which will help to reduce the numerical effort to solve the
OZ/PY equations. From definition(8) it follows immediately

Gnn8sV,V8d = Gn8nsV8,Vd. sA4ad

If the inversion I belongs toP, the invertedGnn8sV ,V8d
must match the old one by use of Eq.(8), sinceHshVnj ,hlnjd
remains unchanged under inversion then

Gn8ns− V,− V8d = Gnn8sV,V8d, sA4bd

whereV=su ,fd↔−V; IV=sp−u ,f+pd has been used. If
the symmetry groupP contains rotationsR, the rotated
Gnn8sV ,V8d must be the original one,

GRnn8sRV,RV8d = Gnn8sV,V8d, sA4cd

where Rnn8 stands forRxnn8. The properties(A4a)–(A4c)
yield for Gnn8,ll8,

Gnn8,ll8 = Gn8n,l8l
* , sA5ad

Gnn8,ll8 = s− 1dl+l8Gn8n,ll8, sA5bd

2In our opinion, the factor16 in the expression fora8 in Ref. [28]
is a misprint and should read13 instead.
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GRnn8,lm,l8m8 = o
m9m-

Dmm9
l sRdDm8m-

l8*
sRdGnn8,lm9,l8m-.

sA5cd

In Eq. (A5c), Wigner’s generalized spherical harmonics(ro-
tation matrices) are used[2]. The reader should note that for
the calculation of the correct rotation matrix elements in Eq.
(A5c), one has to use the three Euler angles carrying some
coordinate frame, in whichxnn8 is fixed, into a new,
symmetry-equivalent one such that the rotated vectorxnn8
coincides withRxnn8. The behavior of the spherical harmon-
ics under complex conjugation yields a fourth property,

Gnn8,lm,l8m8 = s− 1dl+l8+m+m8Gnn8,l−m,l8−m8
* . sA5dd

Equations(A5) are translated to the Fourier transformed ma-
tricesSsqd=4p Gsqd [see Eqs.(23) and (28)] due to

Sll8sqd = Sl8l
* sqd, sA6ad

Sll8sqd = s− 1dl+l8Sll8s− qd, sA6bd

Slm,l8m8sRqd = o
m9m-

Dmm9
l sRdDm8m-

l8*
sRdSlm9,l8m-sqd,

sA6cd

Slm,l8m8sqd = s− 1dl+l8+m+m8Sl−m·l8−m8
* s− qd. sA6dd

Equation (A6a) demonstrates thatSsqd is Hermitian, but
Gnn8 in general is not.

The symmetry of the particles can bring about extra char-
acteristics of the matrix elements[8,13]. For axially symmet-
ric particles with inversion symmetry, which are fixed with
their inversion centers to the lattice,G

nn8
sdd sV ,V8d

=G
nn8
sdd s−V ,V8d=G

nn8
sdd sV ,−V8d=G

nn8
sdd s−V ,−V8d is valid, and

the self-part fulfills Gnn
ssdsV ,V8d=Gnn

ssds−V ,−V8d. Conse-
quently,Gnn

ssd can have nonzero elements forl and l8 even or
for l and l8 odd, respectively, whileG

nn8
sdd has nontrivial ele-

ments forl and l8 even, only.
We want to conclude this section with the remark for

cubic lattices, that by symmetry the knowledge of the corre-
lation functions for only 1

48 of all lattice vectors or1
48 of the

volume of the first Brillouin zone is necessary to calculate
the correlations for the complete lattice or Brillouin zone.

APPENDIX B: CALCULATION OF Dll8
° ,fnn8,ll8 AND

gnn8,ll8

In this appendix we describe how the input quantities
Dll8

° [needed for the OZ equation(31) and to determine
Sll8sqd from Eq. (28)] and fnn8,ll8, gnn8,ll8 [needed for the
PY approximation, Eq.(33)] are calculated.

l-transforming equation(18) yields

Dll8
° = dll8 − dl,00 d00,l8 sB1d

with

dll8 = 4p i l8−lE
S2

rs1dsVdYl
* sVdYl8sVddV

= 4p i l8−ls− 1dmo
l9
F s2l + 1ds2l8 + 1d

4ps2l9 + 1d G1/2

3Csll 8l9,000dCsll 8l9,− mm8m9dkYl9l,

d00,00= 1, sB2d

where the product rule[2] for the spherical harmonics and
kYll=edV rs1dsVdYlsVd has been used. Since the values

kŶll are obtained from the MC simulation, Eqs.(A3) allow
to determine the canonical averageskYll. Then,kYll is sub-
stituted into Eq.(B2), with summation truncated atlmax. This
approximate result fordll8 yields Dll8

° from Eq. (B1).
Contrary to the lattice correlation functions,fnn8sV ,V8d is

not affected by the lattice and refers exclusively to what
happens between two particles. Therefore, it is advantageous
to use ther frame for the calculation of the matrix elements
fnn8,ll8, i.e., the coordinate system in which the connecting
line of the particle sites coincides with thez axis. In that
frame it is f nn8,ll8

r =dmm8 f nn8,ll8m
r . Having calculatedf nn8,ll8m

r

one gets

fnn8,ll8 = o
m9

Dmm9
l sRdDm8m9

l8*
sRdf nn8,ll8m9

r sB3d

similarly to Eq.(A5c). The rotation matrixR carries the cu-
bic coordinate frame into ther frame, where Rxnn8
=s0,0,uxnn8ud. In ther frame, the matrix elements have simi-
lar properties as in Ref.[21],

f nn8,lm,l8m8
r = dmm8 f nn8,ll8m

r , f nn8,ll8m
r = s− 1dl+l8f nn8,ll8m

r*
,

f nn8,ll8m
r = f nn8,ll8−m

r . sB4d

In the following, the abbreviation

Qlmsud = s− 1dmS2l + 1

4p
D1/2F sl − md!

sl + md! G1/2

sin u Plmscosud

is used, where we define

Pl,−mscosud = s− 1dmsl − md!
sl + md!

Plmscosud

to cover all possible values ofm. Using Vr =sur ,frd, Vr8
=sur8 ,fr8d, f1=fr8−fr, f2=fr8+fr, f nn8

r sV ,V8d
; f rsuxnn8u ,ur ,ur8 ,f1d (which function is 2p periodic with
respect to f1) and the relations f rsuxnn8u ,ur ,ur8 ,f1d
= f rsuxnn8u ,ur ,ur8 ,−f1d, and f rsuxnn8u ,ur ,ur8 ,f1d
= f rsuxnn8u , ur , p−ur8 , p+f1d= f rsuxnn8u , p−ur , ur8 , p+f1d
= f rsuxnn8u ,p−ur ,p−ur8 ,f1d (due to the head-tail symmetry)
one finally ends up with
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f nn8,ll8m
r = 16p i l8−lE

0

p E
0

p/2 E
0

p/2

f rsuxnn8u,ur,ur8,f1d

3QlmsurdQl8msur8dcossmf1ddur dur8 df1, sB5d

where the Mayer function in the integrand has to be taken
from Eq. (34).

The calculation ofgnn8,ll8, nÞn8, is done as follows.
From Eq.(13) we get

gnn8,ll8 = dll8 + hnn8,ll8. sB6d

The OZ equation yieldshll8
° sqd from which the back trans-

form hnn8,ll8
° is deduced. For the calculation ofgnn8,ll8, how-

ever, we needhnn8,ll8. It is easy to prove thathnn8,ll8 is
uniquely determined byhnn8,ll8

° [20],

hnn8,ll8 = sdll9 − dl,00 d00,l9dhnn8,l9l-
° sdl-l8 − d00,l8 dl-,00d,

sB7d

where summation convention is assumed. Takingdll8 from
Eq. (B2), hnn8,ll8

° from the OZ equation and again truncating
summations atl = lmax, Eq. (B7) yields an approximation for
hnn8,ll8.

APPENDIX C: THE ITERATION SCHEME

The iteration scheme for solving the OZ/PY equations
self-consistently will be described in this appendix. For par-
ticles of inversion symmetry, only the(ll 8 even) matrix ele-
ments do not vanisha priori. Qualitatively the scheme is
similar to that for liquids, but in detail it is much more in-
volved.

1. Step.As initial condition, which is thepreliminaryfirst
iteration denoted bysc̃nn8d

s1d, it is chosen

sc̃nn8d
s1d = H0, n = n8

fnn8, n Þ n8.
sC1d

Fourier transformation yields(c̃sqd)s1d and (c̃° sqd)s1d by
eliminating the first row and column. Now let us assume we

have found(c̃sqd)snd and its back transformsc̃nn8d
snd.

2. Step.Substituting(c̃° sqd)snd into the OZ equation(31)

yields the total correlation function denoted by(h̃° sqd)snd. Its

back transformsh̃ nn8
° dsnd will not fulfill Eq. (29) in general.

Therefore one has to use

„h° sqd…sn… = „h̃° sqd…snd −
1

N
o
q
„h̃° sqd…snd sC2d

from which one getsshnn8
° dsnd and sgnn8d

snd by use of Eqs.
(B6) and (B7).

3. Step.We substitute(h° sqd)snd into the OZ equation. The
resulting direct correlation function after back transformation

is denoted bysc̃̃ nn8
° dsnd. Finally, thepreliminary nth iteration

sc̃nn8d
snd is replaced by thefinal one,

scnn8d
snd =Hasc̃̃ nn

° dsnd + s1 − adsc̃ nn
° dsnd, n = n8

sc̃nn8d
snd, n Þ n8,

sC3d

wherea is a mixing parameter.
4. Step.Now one substitutessgnn8d

snd, scnn8d
snd, and fnn8

into the right-hand side of the PY equation(36) for nÞn8
and obtainsscnn8

PY dsn+1d. Then thepreliminary sn+1dth itera-
tion sc̃ nn8d

sn+1d is obtained from

sc̃nn8d
sn+1d =Hscnn

° dsnd, n = n8

ascnn8
PY dsn+1d + s1 − adscnn8d

snd, n Þ n8.

sC4d

This procedure is repeated until a fix point for the matri-
ces has been reached. Typically,a=0.1 is chosen to avoid
divergence. Convergence is assumed if all elements of

sh̃ nn
° dsnd have submerged a certain threshold, which is chosen

to be 10−13 times the maximum absolute value of any matrix

elementsh̃ nn8,ll8
° dsnd. Additionally, the average of all nonzero

matrix elements ofsc̃nn8d
sn+1d−sc̃nn8d

snd must be belowa
times a second threshold, which is calculated in the same
manner as theh threshold, but by taking also thel =0,
l8=0 matrix elements into account.
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